

# KFX Concrete Screw Bolt - Large Pan Head (M6x60)

# High Performance Concrete Anchor

### **Fast & Easy Installation**

Optimised thread enables fast cutting into concrete, speeding up the installation process.

### Non-Expansion

Allows for installation closer to the substrate edge, as well as closer distances between anchors.

### **Easily Adjusted & Removed**

Can be adjusted twice during installation. Once installed can be easily removed suiting temporary applications.

#### **Extreme Hold in Concrete**

Special thread geometry offers extreme hold in concrete. for both tensile & shear loads.



**Order Code 03677** 

## **APPROVALS**

#### **Approvals**

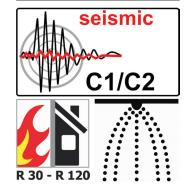
ETA Approval ETA-23/0946:

- For use in concrete for redundant non-structural systems.

ETA Approval ETA-23/0947:

- Mechanical anchors for use in concrete.

#### **Base Material**

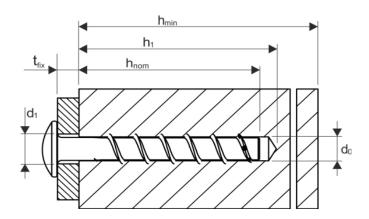

Approved for concrete strength classes from C20/25 to C50/60.

Cracked and non-cracked concrete.

Prestressed hollow core slabs.










## **Product Overview**

Steel - Zinc plated Large pan head with Torx TX30 internal drive Head  $\emptyset$  - 18mm





| Order Code | Product Reference | Dimensions | Depth of drill hole $h_{1,1} / h_{1,2}$ | Embedment depth of anchor h <sub>nom,1</sub> / h <sub>nom,2</sub> | $\begin{aligned} &\text{Max.thickness}\\ &\text{of fixture}\\ &\text{t}_{\text{fix,1}} \ / \ \text{t}_{\text{fix,2}} \end{aligned}$ | Packing Unit |
|------------|-------------------|------------|-----------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 03677      | KFX BDZ-06060     | M6x60      | 40mm / 45mm / 60mm                      | 35mm / 40mm / 55mm                                                | 25mm / 20mm / 5mm                                                                                                                   | 100          |



## **Technical Characteristics**

## Single fastening without fire exposure (steel)

| Screw size: M6                                      | size: M6            |                       | M6  |                   |
|-----------------------------------------------------|---------------------|-----------------------|-----|-------------------|
| Nominal embedment depth                             |                     | h <sub>nom</sub> [mm] |     | h <sub>nom2</sub> |
|                                                     |                     |                       | 40  | 55                |
| Nominal diameter of drill bit                       | d <sub>o</sub> [mm] |                       | 6   |                   |
| Depth of drill hole                                 | h <sub>o</sub> min  | [mm]                  | 45  | 60                |
| Effective anchorage depth                           | h <sub>ef</sub>     | [mm]                  | 31  | 44                |
| Diameter of clearance hole in the fixture           | d <sub>f</sub> max  | [mm]                  | 8   |                   |
| Approved tension load in cracked concrete 1) 2)     | N <sub>zul</sub>    | [kN]                  | 1,0 | 1,9               |
| Approved shear load in cracked concrete 1) 2)       | V <sub>zul</sub>    | [kN]                  | 2,8 | 4,0               |
| Approved tension load in non-cracked concrete 1) 2) | N <sub>zul</sub>    | [kN]                  | 1,9 | 4,3               |
| Approved shear load in non-cracked concrete 1) 2)   | V <sub>zul</sub>    | [kN]                  | 4,0 | 4,0               |
| Approved bending resistance                         | M <sub>zul</sub>    | [kN]                  | 6,2 |                   |
| Minimum egde distance                               | C <sub>min</sub>    | [mm]                  | 40  |                   |
| Minimum spacing                                     | S <sub>min</sub>    | [mm]                  | 40  |                   |
| Minimum base material thickness                     | h <sub>min</sub>    | [mm]                  | 100 |                   |
| Installation torque (with metric connection thread) | T <sub>inst</sub>   | [Nm]                  | 10  |                   |
| Maximum torque (with impact screw driver)           |                     | [Nm]                  | 160 |                   |
| ETA Seismic C1                                      | Seismic C1 C1       |                       | Yes |                   |
| ETA Seismic C2 <sup>3)</sup>                        | C2                  |                       | ×   |                   |

## Single fastening under fire exposure (steel)

| Screw size M6                                                                               |               |                         |      |                     | M6                |  |  |
|---------------------------------------------------------------------------------------------|---------------|-------------------------|------|---------------------|-------------------|--|--|
| Nominal embedment depth                                                                     |               | h <sub>nom</sub> [mm]   |      | h <sub>nom1</sub>   | h <sub>nom2</sub> |  |  |
|                                                                                             |               |                         |      | 40                  | 55                |  |  |
| Approved load under tensile and shear use $(F_{zul,fi} = N_{zul,fi} = V_{zul,fi})$          |               |                         |      |                     |                   |  |  |
| Fire resistance class                                                                       | S             |                         |      |                     |                   |  |  |
| R 30                                                                                        |               | F <sub>zul,fi30</sub>   | [kN] | 0,5                 | 0,9               |  |  |
| R 60                                                                                        |               | F <sub>zul,fi60</sub>   | [kN] | 0,5                 | 0,8               |  |  |
| R 90                                                                                        |               | F <sub>zul,fi90</sub>   | [kN] | 0,5                 | 0,6               |  |  |
| R 120                                                                                       |               | F <sub>zul,fi120</sub>  | [kN] | 0,                  | ,4                |  |  |
| R 30                                                                                        | Approved load | M <sub>zul,fi 30</sub>  | [Nm] | 0                   | ,7                |  |  |
| R 60                                                                                        |               | M <sub>zul,fi 60</sub>  | [Nm] | 0,                  | ,6                |  |  |
| R 90                                                                                        |               | M <sub>zul,fi 90</sub>  | [Nm] | 0                   | ,5                |  |  |
| R 120                                                                                       |               | M <sub>zul,fi 120</sub> | [Nm] | 0                   | ,3                |  |  |
| Edge distance                                                                               |               |                         |      |                     |                   |  |  |
| R 30 to R 120                                                                               |               |                         | [mm] | 2 x h <sub>ef</sub> |                   |  |  |
| The edge distance must be at least 300 mm if the fire load attacks from more than one side. |               |                         |      |                     |                   |  |  |
| Spacing                                                                                     |               |                         |      |                     |                   |  |  |
| R 30 to R 120                                                                               |               | S <sub>cr,fi</sub>      | [mm] | 4 x h <sub>ef</sub> |                   |  |  |
| Concrete pry-out failure                                                                    |               |                         |      |                     |                   |  |  |
| R 30 to R 120 k [-] 1,0                                                                     |               |                         |      |                     | 0                 |  |  |
| In wet concrete, the embedment depth must be increased by at least 30 mm.                   |               |                         |      |                     |                   |  |  |

 $<sup>^{9}</sup>$  For the determination of the approved loads, the partial safety factor from the approval  $\gamma$ M=1,0 was taken into account for material resistance and a partial safety factor  $\gamma$ F=1,4 for load actions.

<sup>&</sup>lt;sup>2)</sup> These values apply without influence of the spacing and edge distances. <sup>3)</sup> C2 only for version zinc plated.

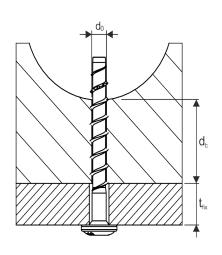


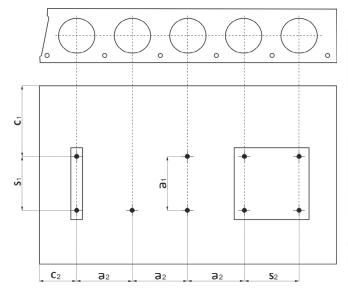
## Multiple fastening without fire exposure (steel)

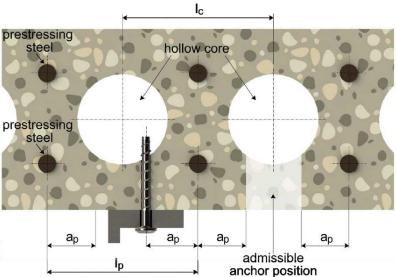
| Screw size M6                                       |                                     |                       |      | M6  |  |
|-----------------------------------------------------|-------------------------------------|-----------------------|------|-----|--|
| Nominal embedment depth                             |                                     | h <sub>nom</sub> [mm] |      | 55  |  |
| Nominal diameter of drill bit                       | d <sub>o</sub>                      | [mm] 6                |      | 5   |  |
| Depth of drill hole                                 | h <sub>o</sub> min                  | [mm]                  | 40   | 60  |  |
| Effective anchorage depth                           | h <sub>ef</sub>                     | [mm]                  | 27   | 44  |  |
| Diameter of clearance hole in the fixture           | d <sub>f</sub> max                  | [mm]                  | m] 8 |     |  |
| Approved tension load in cracked concrete 1);2)     | N <sub>zul</sub>                    | [kN]                  | 1,4  | 3,6 |  |
| Approved shear load in cracked concrete 1);2)       | V <sub>zul</sub>                    | [kN]                  | 2,3  | 4,8 |  |
| Approved tension load in non-cracked concrete 1);2) | N <sub>zul</sub>                    | [kN]                  | 1,4  | 3,6 |  |
| Approved shear load in non-cracked concrete 1);2)   | $V_{zul}$                           | [kN]                  | 3,3  | 4,0 |  |
| Minimum egde distance                               | C <sub>min</sub>                    | [mm]                  | 35   | 40  |  |
| Minimum spacing                                     | S <sub>min</sub>                    | [mm]                  | 35   | 40  |  |
| Minimum base material thickness                     | h <sub>min</sub>                    | [mm]                  | 80   | 100 |  |
| Installation torque (with metric connection thread) | T <sub>inst</sub>                   | [Nm]                  | 10   |     |  |
| Maximum torque (with impact screw driver)           | que (with impact screw driver) [Nm] |                       | 160  |     |  |

 $<sup>^{1)}</sup>$  For the determination of the approved loads, the partial safety factor from the approval  $\gamma$ M=1,0 was taken into account for material resistance and a partial safety factor  $\gamma$ F=1,4 for load actions.

### Multiple fastening under fire exposure (steel)


| Screw size M6                                                                               |               |                         |      |                     | M6                |  |  |
|---------------------------------------------------------------------------------------------|---------------|-------------------------|------|---------------------|-------------------|--|--|
| Nominal embedment depth                                                                     |               | h <sub>nom</sub> [mm]   |      | h <sub>nom1</sub>   | h <sub>nom2</sub> |  |  |
|                                                                                             |               |                         |      | 35                  | 55                |  |  |
| Approved load under tensile and shear use $(F_{zul,fi} = N_{zul,fi} = V_{zul,fi})$          |               |                         |      |                     |                   |  |  |
| Fire resistance class                                                                       | 5             |                         |      |                     |                   |  |  |
| R 30                                                                                        |               | F <sub>zul,fi 30</sub>  | [kN] | 0,8                 | 0,9               |  |  |
| R 60                                                                                        |               | F <sub>zul,fi 60</sub>  | [kN] | 0,8                 | 0,8               |  |  |
| R 90                                                                                        | Approved load | F <sub>zul,fi 90</sub>  | [kN] | 0,                  | ,6                |  |  |
| R 120                                                                                       |               | F <sub>zul,fi 120</sub> | [kN] | 0,                  | .4                |  |  |
| R 30                                                                                        | Approved load | M <sub>zul,fi 30</sub>  | [Nm] | 0,                  | ,7                |  |  |
| R 60                                                                                        |               | M <sub>zul,fi 60</sub>  | [Nm] | 0,                  | ,6                |  |  |
| R 90                                                                                        |               | M <sub>zul,fi 90</sub>  | [Nm] | 0,                  | ,5                |  |  |
| R 120                                                                                       |               | M <sub>zul,fi 120</sub> | [Nm] | 0,3                 |                   |  |  |
| Edge distance                                                                               |               |                         |      |                     |                   |  |  |
| R 30 to R 120                                                                               |               |                         | [mm] | 2 x h <sub>ef</sub> |                   |  |  |
| The edge distance must be at least 300 mm if the fire load attacks from more than one side. |               |                         |      |                     |                   |  |  |
| Spacing                                                                                     |               |                         |      |                     |                   |  |  |
| R 30 to R 120                                                                               |               |                         | [mm] | 4 x h <sub>ef</sub> |                   |  |  |
| Concrete pry-out failure                                                                    |               |                         |      |                     |                   |  |  |
| R 30 to R 120                                                                               |               | k                       | [-]  | 1,                  | 0                 |  |  |
| In wet concrete, the embedment depth must be increased by at least 30 mm.                   |               |                         |      |                     |                   |  |  |


<sup>&</sup>lt;sup>2)</sup> These values apply without influence of the space and edge distancing.




## Multiple fastening in pre-stressed hollow core slabs without fire exposure (steel)

| Screw size M6                                         |                    |                |      | M6  |      |  |
|-------------------------------------------------------|--------------------|----------------|------|-----|------|--|
| Bottom flange thickness                               |                    | [mm]           | ≥ 25 | ≥30 | ≥ 35 |  |
| Nominal diameter of drill bit                         |                    | [mm]           |      | 6   |      |  |
| Depth of drill hole                                   | h₀ min             | [mm]           | 30   | 35  | 40   |  |
| Clearance hole diameter                               | d <sub>f</sub> max | [mm]           | 8    |     |      |  |
| Approved tension load <sup>1)</sup>                   | F <sub>zul</sub>   | [kN]           | 0,5  | 1,0 | 1,4  |  |
| Minimum egde distance                                 |                    | [mm]           | 100  |     |      |  |
| Minimum spacing                                       |                    | [mm]           | 100  |     |      |  |
| Minimum distance between anchor groups                |                    | [mm]           | 100  |     |      |  |
| Core distance                                         |                    | [mm]           | 100  |     |      |  |
| Prestressing steel distance                           |                    | [mm]           | 100  |     |      |  |
| Distance between anchor position & prestressing steel |                    | [mm]           | 50   |     |      |  |
| Hollow core width (w)                                 |                    | (w/e) max [mm] |      | 4,2 |      |  |
| Bridge width (e)                                      |                    |                |      |     |      |  |
| Installation torque                                   | T <sub>inst</sub>  | [Nm]           | 10   |     |      |  |







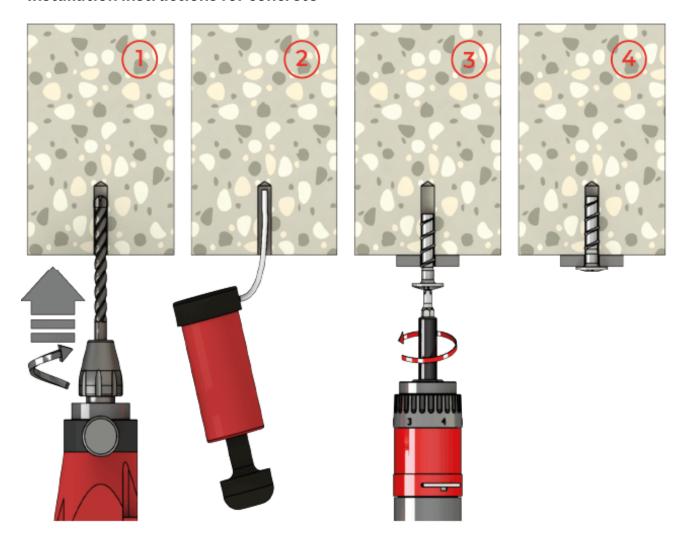
C1, C2 = Edge distance

S1, S2 = Spacing

a1, a2 = Distance between anchor groups

I = Core distance

 $I_p^c$  = Prestressing steel distance


a<sub>p</sub> = Distance between anchor position & prestressing steel

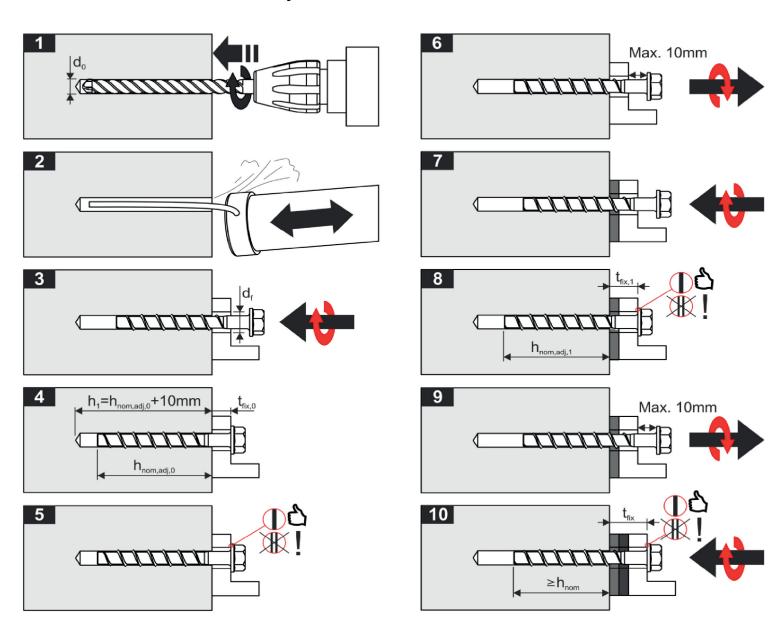
 $<sup>^{1)}</sup>$  For the determination of the approved loads, the partial safety factor from the approval  $\gamma$ M=1,0 was taken into account for material resistance and a partial safety factor  $\gamma$ F=1,4 for load actions.



## **Installation Instructions**

#### Installation instructions for concrete



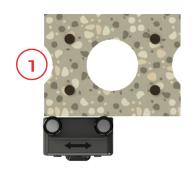

- 1. Drill the hole to required depth using with rotary hammer drill.
- 2. Thoroughly clean the hole using blow out hand pump (min 4 pumps).
- 3. Screw in the KFX Concrete Screw Bolt and tighten to the correct torque using a calibrated torque wrench.
- 4. Once installed, the screwhead must be secure and completely flush with the undamaged substrate surface.

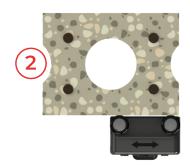
#### **Tools Required:**

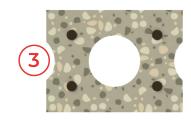
- SDS drill with 6mm drill bit
- Blow out pump
- Cordless screwdriver with a Torx TX30 head
- Torque wrench



### Installation instructions with adjustment for M6 screws

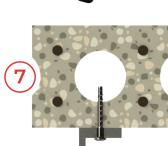




Important - please note during adjustment:


- The anchor may be adjusted no more than twice, whilst the anchor may be unscrewed a maximum of 10mm.
- The total allowed thickness of shims added during the adjustment process is 10mm.
- The final embedment depth after adjustment process must be equal or longer than  $h_{nom}$ .



### Installation instructions for prestressed hollow core slabs
















- 1) 3) Locate prestressed steel with a reinforcement bar detector and mark the location.
- 4) Create a hole in the permissible anchoring area.
- 5) Clean hole using blow out hand pump (min 4 pumps).
- 6) Screw in the KFX Concrete Screw Bolt and tighten to the correct torque using a calibrated torque wrench.
- 7) Once installed, the screwhead must be secure and completely flush with the undamaged substrate surface.